FEATURES

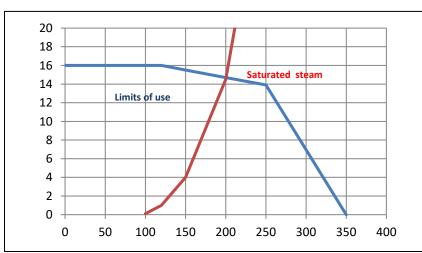
The RD10 pressure reducer is a direct-acting and proportional pressure reducer. With a robust design, the RD10 pressure reducer is intended for industrial applications such as steam, air, water and all compatible fluid pressure-reducing stations. A balancing bellows and a large-section guided valve provide stable regulation under all operating conditions. The actuator must be connected to the downstream pressure via a condensation pot for steam.

AVAILABLE MODELS

Cast iron body GS PN16
Diameters DN15 to DN100

PN16 flanged connections according to EN 1092-1

Downstream adjustment ranges:


 $\underline{\text{DN15 to DN50}};\,0.4\text{-}1\,/\,0.9\text{-}1.8\,/\,1.7\text{-}3\,/\,2.8\text{-}5\,/\,4.8\text{-}7\,/\,6.8\text{-}15$ bar.

<u>DN65 to DN80</u>: 0.4-1 / 0.9-2 / 1.9-5 / 4.5-8.5 and 4.5-11.5 / 8-15 / 11-15 bar.

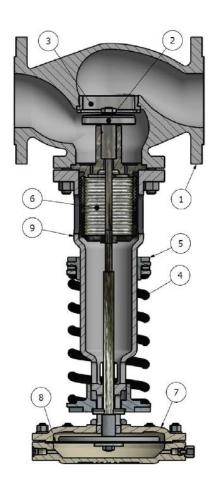
<u>DN100</u>: 0.4-1 / 0.9-2.6 / 2.5-8.5 / 8-15 bar.

LIMITS OF USE

Fluid:	Group 2 according to CE 14/68 Use prohibited on group I gases
Fluid pressure: PS	16 bar
Fluid temperature: TS	300°C (with water seal)
Use on steam	15 bar / 200°C
Actuator membrane	+120°C
Rangeability	10:1
Explosive areas	Areas 1, 2, 21 and 22 only

Information given as an indication only, and subject to possible modifications.

Pages	1/8
Ref.	TDS1590
Rev.	03
Date	02/2025



CONSTRUCTION GUIDELINES AND STANDARDS

OBJECT Standard		ОВЈЕСТ	Standard
EC Drace Directive 14/CO	<u>DN15 to DN50</u> : art.4 § 3	ATEX Directive CE 14/34	EN 13465-1 and 5
EC Pressure Directive 14/68	DN65 to DN100: category 1	Flange connection	EN 1092-2
Construction	EN 12516-2	Face-to-face dimension	EN 558-1
Material	EN 1503-3	SIL	IEC 61508

CONSTRUCTION

No.	Name	Material
1	Body	Fonte EN-GJS-400-18 RT
2	Disc	St. steel ASTM A182 F304
3	Seat	St. steel ASTM A182 F304
4	Spring	Spring steel
5	Adjustment ring	St. steel ASTM A182 F304
6	Compensating bellows	St. steel ASTM A182 F304
7	Actuator	Fonte EN-GJS-400-18 RT
8	Diaphragm	EPDM
9	Bonnet	Fonte EN-GJS-400-18 RT

Information given as an indication only, and subject to possible modifications.

Pages	2/8
Ref.	TDS1590
Rev.	03
Date	02/2025

SIZING

Choice of diameter: it is not necessary to choose a pressure reducer whose diameter is equal to that of the piping but to determine this diameter using the calculation formulas presented below.

Flow coefficients Kv (m³/h) of RD10:

DN	15	20	25	32	40	50	65	80	100
Ø passage (mm)	20	20	25	25	45	45	64	76	100
Kv (m3/h)	5.0	6.5	11	14.5	30	40	58	78	128

Calculation formula for a liquid:

$$Kv = Q x \sqrt{\frac{\rho}{\Delta P}}$$

Kv: flow coeffi h.	cient in m3 [/]	Q: flow rate in m3 [/] h		stream-downstream μ ure difference in bar	o: density kg/dm ³
Calculation form	ula for a gas :		Kv	flow rate coefficient	m³/h
	0	dar	Q	flow in	Nm³/h
If P2 > P1/2	$Kv = \frac{Q}{445}$	$x\sqrt{\frac{a x I}{\Delta P x P 2}}$	d	density	Kg / m^3
			T	Absolute temperature	°K (°C +273)
			P1	Upstream pressure (abs)	bar
If P2 < P1/2	$Kv = \frac{Q}{240 x}$	$\frac{1}{P_1} x \sqrt{d x T}$	P2	Downstream pressure (abs)	bar
			ΔP	Upstream-downstream differ	ence bar

Minimum pressure difference: The RD 10 pressure reducer has its own pressure loss, which results in a minimum difference between the upstream and downstream pressure. This difference is 15 to 20% of the upstream pressure.

Double reduction: a pressure reduction from a very high pressure to a very low pressure is theoretically possible. The PRV allows a maximum ΔP of 13 bar. However, noisy operation is to be expected. It is advisable to provide a 2-stage pressure reduction by installing two pressure reducers in series. The intermediate pressure is calculated as follows:

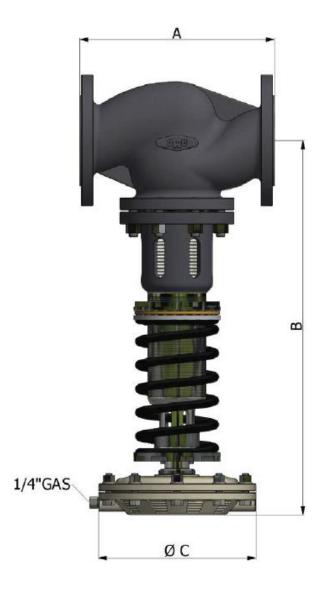
$$P$$
 intermediate = $\sqrt{P \text{ amont } x P \text{ aval}}$

Upstream flow variation: When the upstream flow varies over a range that is too wide, the downstream pressure may vary from the set point, or this set point pressure may take some time to recover.

Upstream pressure variation: when the upstream pressure varies, the downstream pressure varies in the same direction. If the flow rate also changes at the same time, the stability of the downstream pressure becomes even more difficult to ensure. If such a variation is not acceptable for the intended use, choosing a control valve controlled by a pressure transmitter installed downstream is preferable.

Pumping phenomenon: when the pressure reducer is too large for the flow rate to be ensured, unstable operation of the device is frequently observed (so-called "pumping" phenomenon). It is, therefore, essential to size a device that is neither too large nor too small.

Information given as an indication only, and subject to possible modifications.



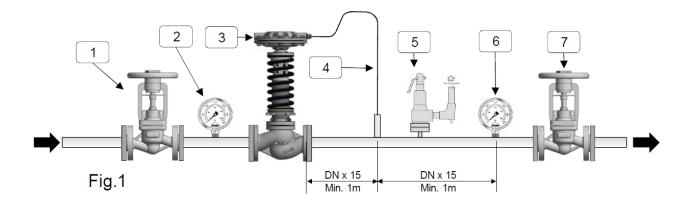
DIMENSIONS (mm) and WEIGHT (Kg)

DN	Α	В	Weight
15	130	406	9.0
20	150	406	9.5
25	160	425	10.5
32	180	425	13.0
40	200	510	19.5
50	230	510	22.5
65	290	550	
80	310	544	
100	350	670	

Actuator diameter

Actuator	С	Weight
AR085	155	4.5
AR100	170	5.0
AR120	195	7.5
AR150	220	8.5
AR205	283	14.5
AR 265	343	20.5

Condensation pot

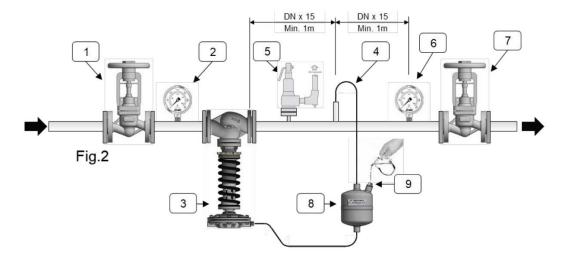

Information given as an indication only, and subject to possible modifications.

Pages	4/8
Ref.	TDS1590
Rev.	03
Date	02/2025

INSTALLATION OF RD10 ON AIR OR WATER NETWORKS

- 1. The RD10 regulator can be installed indoors or outdoors. However, if the fluid is likely to freeze, provide a suitable frost protection system.
- 2. The RD10 regulator must be installed on horizontal piping, either head up or head down.
- 3. Convergent and divergent: if the RD10 diameter is less than the diameter of the pipe (see § dimensioning), install a convergent upstream. For use on a neutral gas, it is necessary to provide a pipe at the outlet that is one diameter larger than that of the inlet and to connect it by a divergent, the expanded gas requiring a larger flow section downstream than upstream.
- 4. To ensure good downstream pressure stability and reduce outlet turbulence, provide a straight length of stilling equal to 15xDN downstream of the reducer.
- 5. Respect the direction of passage indicated on the body.
- 6. Plan a protective filter in advance.
- 7. Provide shut-off valves upstream and downstream of the R10.
- 8. Also provide upstream and downstream pressure gauges with suitable scales. The downstream pressure gauge should be installed after the stilling length.
- 9. A safety valve must be provided downstream of the regulator to protect the downstream network (setting pressure = downstream pressure +10%, valve flow rate = regulator flow rate).

No.	Name	No.	Name
1	Upstream valve	5	Downstream safety valve
2	Upstream pressure gauge	6	Downstream pressure gauge
3	RD10 pressure reducer	7	Downstream valve
4	Pressure port		

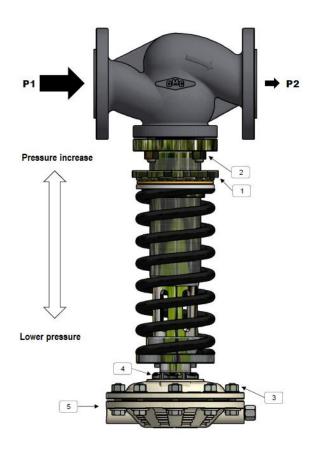

Information given as an indication only, and subject to possible modifications.

Pages	5/8
Ref.	TDS1590
Rev.	03
Date	02/2025

INSTALLATION ON STEAM NETWORKS WITH CONDENSATION POT

- 1. The RD10 regulator can be installed indoors or outdoors. However, if the fluid is likely to freeze, provide a suitable frost protection system.
- 2. The RD10 regulator must be installed on horizontal piping with the head down.
- 3. Convergent and divergent: if the RD10 diameter is less than the diameter of the pipe (see § dimensioning), install a convergent upstream. Provide at the outlet of the PRV-S a pipe one diameter larger than that of the inlet and connect it by a divergent, the expanded gas requiring a larger flow section downstream than upstream.
- 4. Plan to install the condensation pot halfway up the low point as shown in the diagram below. The pressure port point must be located at the end of the stilling length. Connect with a steel or stainless steel tube diameter 10, resistant to the upstream pressure. Fill the condensation pot through the side hole. Close the cap.
- 5. To ensure good downstream pressure stability and reduce outlet turbulence, provide a straight length of stilling equal to 15xDN downstream of the regulator.
- 6. Respect the direction of passage indicated on the body.
- 7. Plan a protective filter in advance.
- 8. Provide shut-off valves upstream and downstream of the R10.
- 9. Also provide upstream and downstream steam pressure gauges with suitable scales. The downstream pressure gauge should be installed after the stilling length.
- 10. A safety valve must be provided downstream of the regulator to protect the downstream network (setting pressure = downstream pressure +10%, valve flow rate = regulator flow rate).

No.	Name	No.	Name
1	Upstream valve	5	Downstream safety valve
2	Upstream pressure gauge	6	Downstream pressure gauge
3	RD10 regulator	7	Downstream valve
4	Pressure port	8	Condensation pot
		9	Filling hole


Information given as an indication only, and subject to possible modifications.

Pages	6/8			
Ref.	TDS1590			
Rev.	03			
Date	02/2025			

START-UP AND ADJUSTMENT

- The start-up can only be carried out by a qualified technician familiar with steam networks.
- 2. Wear appropriate clothing and protection.
- 3. Before any installation, insulate the upstream and downstream pipes, depressurize the pipeline and bring the installation to room temperature.
- 4. Check that the pressure range indicated on the body is adequate for the use.
- 5. Check the direction of fluid flow in relation to the arrow indicated on the body.
- 6. Thoroughly clean the piping of any particles or shavings by rinsing with water or blowing with air.
- 7. Install the RD 10 reducer respecting the direction of the arrow indicated on the body.
- 8. Open the drain pot cap and fill with water. Do not exceed the low level of the tapping on the downstream pipe. Use the drain plugs on the servomotor to remove air.
- 9. Slowly open the upstream and downstream isolation valves.
- 10. Use the adjustment screw (13) or (14) and the pressure indication on the pressure gauge to adjust the desired downstream pressure.

INTERVIEW

The RD10 regulator is a maintenance-free device. However, it is preferable to schedule a periodic inspection visit every 6 to 12 months in order to check the condition of the internal parts.

- 1. Before any disassembly, close the upstream and downstream isolation valves,
- 2. Release the adjustment spring and depressurize the system. For hot fluids, wait for the system to cool to room temperature.
- 3. Then remove the regulator. When checking, pay particular attention to the condition of the seat and the valve. Clean all internal parts. Reassemble all internal parts in the reverse order of disassembly.
- 4. Remove the upstream filter cap and clean or replace the strainer.
- 5. Put the device back into service by slowly opening the upstream valve then the downstream valve. Readjust the release pressure using the reference screw.

Information given as an indication only, and subject to possible modifications.

Pages	7/8				
Ref.	TDS1590				
Rev.	03				
Date	02/2025				

TROUBLESHOOTING

Symptom	Possible cause	Repair				
	Incorrectly sized actuator	Review the sizing				
	Clogged pressure test pipe	Disassemble and check the tube				
Downstream pressure too high	Damaged actuator membrane	Replace it				
	Damaged valve or seat	Replace it				
	Damaged stem-bellows assembly	Replace it				
At full flow the downstream pressure is lower than the setting pressure	Undersized actuator	Review the sizing and possibly replace the actuator				
The actuator pressure range is correct but the regulator is not providing the requested flow rate	The regulator is not sized correctly	Review the sizing and possibly replace the regulator				
	The downstream pressure tap is too close to the regulator	Move the pressure tap further downstream				
Downstream pressure is not stable	The reduction ratio is too high	Plan to install two regulators in a series				
	The pressure gauge is too sensitive	Reduce the diameter of the tube.				
	The regulator is oversized	Review the sizing				

SPARE PARTS

Landmarks	Description	Codes								
7	Complete actuator	0.4-1		0.9-1.8	1.7-3 2		2.8-5	4.8-	7	6.8-15
,	Code	AR265		AR205	AR1	50	AR120	AR10	00	AR85
8	Membrane	contact us								
6	Stem-bellows assembly	-								
3	Seat	-								
	Body gasket	15	20	25	32	40	50	65	80	100
	Code									
4	Spring	contact us								
5	Adjustment ring	-								

Information given as an indication only, and subject to possible modifications.

Pages	8/8				
Ref.	TDS1590				
Rev.	03				
Date	02/2025				