CARACTERISTIQUES

Les robinets à papillon 1133 et 1135 sont destinés à l'ouverture / fermeture automatique des conduites de différents fluides courants. Le corps du robinet est en fonte grise. Différentes configurations de matériaux du papillon et de la manchette permettent de l'utiliser sur différentes applications. De type « lug » avec oreilles taraudées, le montage se fait entre brides PN10/16. Le col long permet le montage sur tuyauteries calorifugées. La platine ISO 5211 permet le montage direct de l'actionneur. La motorisation pneumatique AP RE (Butées réglables) est disponible en double et simple effets avec de nombreuses options.

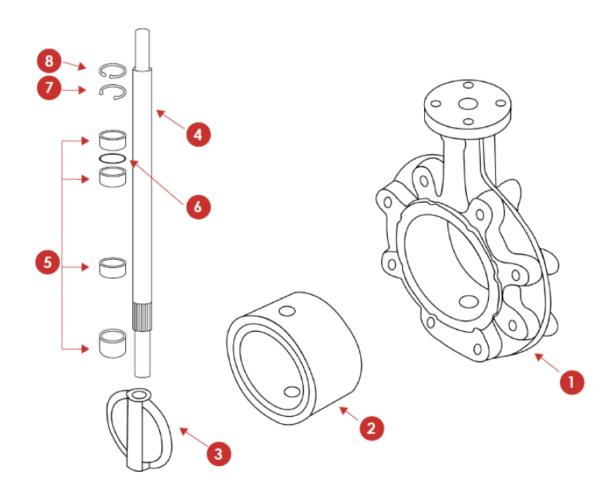
LIMITES D'EMPLOI

Pression du fluide : PS	16 bar jusqu'au DN 300
Température du fluide : TS	Selon tableau ci-dessous
Utilisations interdites	Vapeur, gaz naturel
Température ambiante	-10°C / +80°C
Air comprimé moteur	mini 6 bar / maxi 10 bar

DN 40 à DN 300. Raccordements entre brides PN10/16. Actionneur double effet et simple effet.

Ref.	Papillon	Manchette	Exemple d'applications	TS min	TS max
1133	lnox	EPDM	Eau déminéralisée – alcalins	-10°C	+110°C
1135	fonte	EPDM	Eau froide – eau chaude	-10°C	+110°C

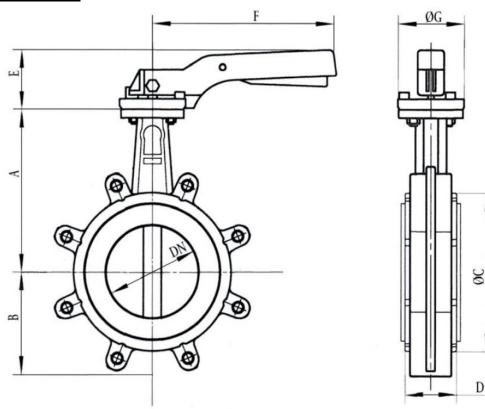
DIRECTIVES ET NORMES DE CONSTRUCTION


OBJET	Norme	ON	OBJET	Norme
Directive CE pression 2014/68	Cat. III module H	0035	Test final	API 598
Dimension face à face	ISO 5752 série 20		Racc. pilote actionneur	NAMUR
Dimension des brides	EN 1092-1		Racc. boîtier fins de course	VDI/VDE 3845
Racc. Motorisation	ISO 5211		Niveau SIL 3 (actionneur seul)	EN 61508

Informations données à titre indicatif et sous réserve de modifications éventuelles

Pages	1/4
Ref.	FT1135+AP-RE
Rev.	0
Date	04/2017

CONSTRUCTION


N°	Désignation	1133	1135		
1	Corps	Fonte grise E	EN GJL-250		
2	Manchette	EPDM	EPDM		
3	Papillon	Inox 1.4408	Fonte EN GJS-400-15 nickelée		
4	Axe traversant	Inox	416		
5	Paliers	PTF	E		
6	O-ring	NBR	NBR		
7	Circlips	Acid	Acier		
8	Circlips	Acid	er		

Informations données à titre indicatif et sous réserve de modifications éventuelles

Pages	2/4
Ref.	FT1135+AP-RE
Rev.	0
Date	04/2017

DIMENSIONS (mm)

DN	40	50	65	80	100	125	150	200	250	300
Α	130	136,5	142	158	180	192	215	242	280	310
В	61	77	87,5	95	107	121	144	171	205	235
Ø C	82	95	109	127	152	180	207	260	315	370
D	33	43	46	46	52	56	56	60	68	78
E	74	74	74	74	74	79	79	37	37	37
F	200	200	200	200	200	278	278	355	507	507
Ø G	65	65	65	65	65	90	90	125	150	150
Poids (kg)	2,43	3,13	3,73	4,98	5,64	9,06	10,9	16,7	31.4	42

COEFFICIENT DE DEBIT Kv (m³/h)

DN	40	50	65	80	100	125	150	200	250	300
Kv	78	98	167	258	512	872	1347	2675	4555	7037

Informations données à titre indicatif et sous réserve de modifications éventuelles

Pages	3/4
Ref.	FT1135+AP-RE
Rev.	0
Date	04/2017

ROBINETS A PAPILLON 1133-1135 + ACTIONNEUR PNEUMATIQUE AP RE

MOTORISATION PNEUMATIQUE AP RE

La motorisation ALPHAIR RE proposée en standard s'entend pour :

- actionneur type piston-crémaillère en aluminium anodisé.
- coefficient de sécurité 1,3 minimum par rapport au couple nominal du robinet.
- air moteur sec non lubrifié, pression 6 bar minimum.
- différence de pression amont / aval ΔP=10 bar max.

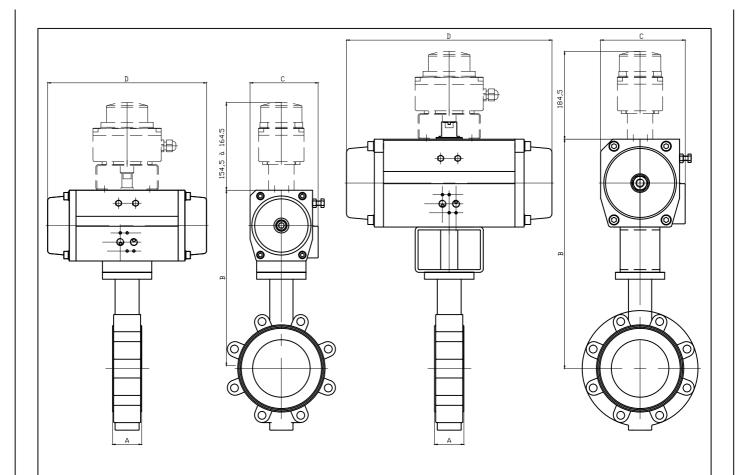
Le montage de l'actionneur est :

- du type montage direct avec platine de motorisation en aluminium du DN 32 à DN 200.
- du type arcade + entraîneur en inox selon norme EN 15081 pour les DN250 et 300.

DN	Double effet	V (litres)	Temps (s)*	Simple effet	V (litres)	Temps (s)*
40	RE 51	0,23	1	RES 64/6	0,45	1
50	RE 51	0,23	1	RES 64/6	0,45	1
65	RE 64	0,45	1	RES 76/6	0,61	1
80	RE 64	0,45	1	RES 76/6	0,61	1
100	RE 76	0,61	1	RES 101/6	1,80	2
125	RE 76	0,61	1	RES 101/6	1,80	2
150	RE 86	0,98	2	RES 116/6	2,80	2
200	RE 101	1,80	2	RES 126/6	3,70	3
250	RE 116	2,80	2	RES 146/6	4,90	3
300	RE 126	3,70	3	RES 181/6	11,1	5

Pour toute autre condition de service, nous consulter.

OPTIONS DE MOTORISATION


1	actionneurs dimensionnés pour pression d'air comprimé 3,4 ou 5 bar				
2	actionneur dimensionné pour différence de pression amont / aval ΔP supérieure à 10 bar				
3	actionneur avec revêtements spéciaux, actionneur en inox				
4	actionneur pour températures ambiantes très basses (-60°C) ou très hautes (+150°C)				
5	commande manuelle par réducteur débrayable				
6	filtre-régulateur d'air comprimé				
7	électro-distributeurs de pilotage tous types				
8	boîtiers fin de course tous types				
9	positionneur tous types				
10	échappement rapide, limiteurs de débit – freins d'échappement				

Informations données à titre indicatif et sous réserve de modifications éventuelles

Pages	4/4
Ref.	FT1135+AP-RE
Rev.	0
Date	04/2017

^{*}temps indicatif de l'actionneur à vide pour une ouverture ou une fermeture.

*: montage avec platine H=80mm

			_							
DN	4	0	5	i0	6	5	8	80	100	
ALPHAIR	51 RE	64 RES	51 RE	64 RES	64 RE	76 RES	64 RE	76 RES	76 RE	101RES
А	33		4	3	4	6	4	6	5	2
В	219	236	226	243	248	264	264	280	302	327
С	75	86	75	86	86	94	86	94	94	120
D	138	155	138	155	155	203	155	203	203	261
KG	3.6	4.3	4.5	5.1	5.4	7.1	6.7	8.3	8.6	12.3

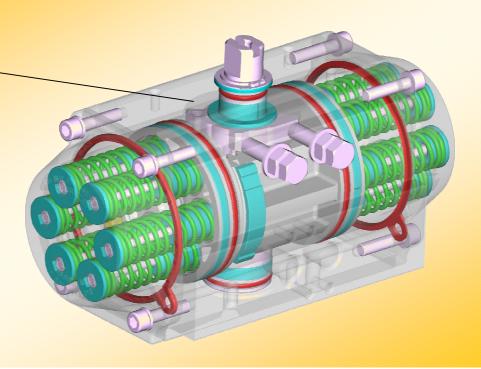
DN	125		150		2	00	25	50	300		
ALPHAIR	76 RE	101RES	86 RE	116RES	101 RE	126RES	116 RE	146RES	126 RE	181RES	
Α	56		5	i6	ϵ	0	68		7	8	
В	320	345	353	386	384	415	505*	537*	548*	610*	
С	94	120	104	134	120	145	134	165	145	204	
D	203	261	239	304	261	333	304	398	333	482	
KG	12	15.7	14.8	19.7	22.5	29.6	42.3	50.3	55.4	68.1	

Informations données à titre indicatif et sous réserve de modifications éventuelles Data subject to alteration

			Tolérances générales: +/- 0.2		Date	REV.
R□B:	INET A PAPILI	N 1133-1135 + 1133-1135	BUTTERFLY VALVE	Matiére :		
ΑŒ	CTIONNEUR ALI ALPHAIR RE	PHAIR RE/PNE : + BFC/LIMIT	Poids (Kg) :			
	SECTORII	EL 4	5, Rue du Ruisseau	Traitement : SANS		
Į.			SAINT QUENTIN FALLAVIER	Plan n° Ens	1281	

ACTIONNEURS PNEUMATIQUES AVEC RÉGLAGE EXTERNE

ROTATION 90°



ACTIONNEURS PNEUMATIQUES ALPHAIR RÉGLAGE EXTERNE

Nouvelle Série "RE"

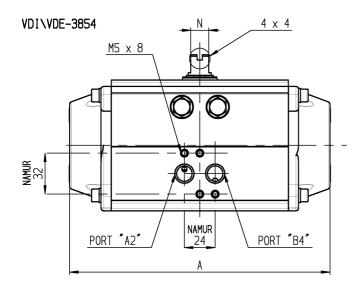
La nouvelle série d'actionneurs pneumatiques ALPHAIR avec système de «réglage externe» répond à toutes les demandes de qualité et de précision.

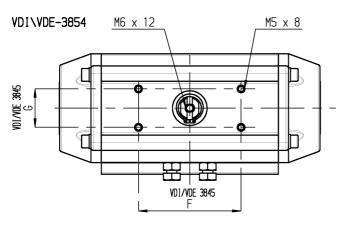
Le nouveau système de «réglage externe» garantit la précision maximum d'ajustement de la rotation, même pour les utilisations les plus difficiles.

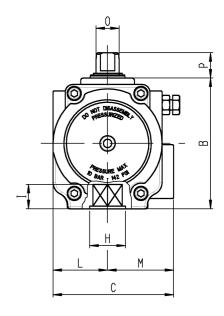
Adaptés à toutes les applications et à toutes les exigences, les actionneurs pneumatiques ALPHAIR sont précisément conçus pour garantir le maximum de performance et la plus grande durabilité.

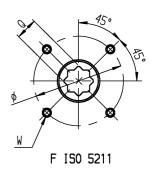
Encore plus compacts, robustes et fiables, les actionneurs pneumatiques ALPHAIR sont parfaitement interchangeables et adaptables à pratiquement tous les types de robinets.

CARACTÉRISTIQUES GÉNÉRALES STANDARD

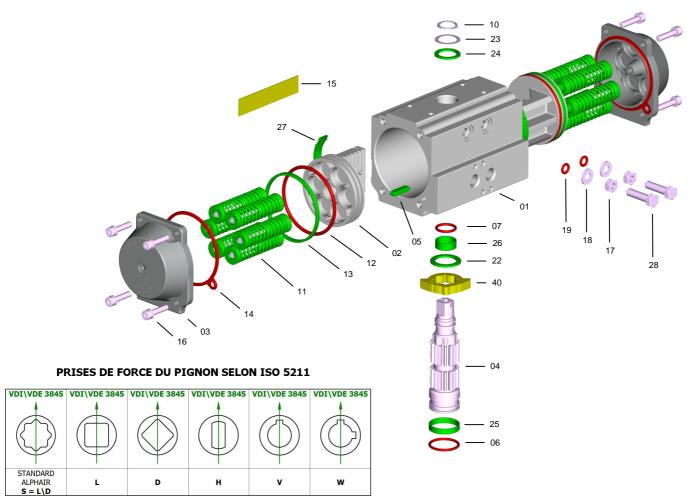

- Corps en aluminium extrudé ASTM 6063, rugosité interne Ra=0,4-0,6 e traitement d'anodisation épaisseur 25 µm.
- Piston en alliage d'aluminium moulé sous pression EN AB 46100, anodisation épaisseur 15 μm.
- > Couvercles en alliage d'aluminium moulé sous pression EN AB 46100, avec peinture polyester épaisseur 60-80 µm.
- > Pignons en acier carbone nickelé épaisseur 20 μm, en option pignon en acier inoxydable 316 (A4).
- Cames de régulation de la rotation, en acier inoxydable AISI 316 (A4).
- > Visserie en acier inoxydable inox AISI 304 (A2).
- > Etanchéité en caoutchouc nitrile NBR. Option haute température en FPM/FKM. Option basse température en SILICONE.
- > Guide de glissement à bas coefficient de frottement en résine d'acétale LAT-LUB, facilement remplaçable. Option basse température en PA66. Option très basse température en LEXAN.
- > Cartouche ressorts pré-comprimés pour insertion facile ou remplacement, revêtus polyester épaisseur 25-30 µm.
- > Graisse synthétique standard à haute performance. Lubrifiants spéciaux pour haute et basse températures.
- Diverses protections externes disponibles, pour usage en ambiances industrielles, chimiques, alimentaires ou pharmaceutiques.
 - Rotation 90° +/-1° déterminée par appareil électronique. Ajustement de la rotation de +/- 5° dans les 2 sens.
 - Double perçage inférieur pour la fixation sur le robinet et centrage selon les normes ISO 5211 et DIN 3337.
 - Douille d'entraînement femelle du pignon à double carré (étoile), suivant norme ISO 5211 et DIN 3337 pour robinet ¼ de tour dans l'axe 0° et en diagonale 45°.
 - Orifice de raccordement de l'air comprimé, suivant la norme NAMUR VDI\VDE-3845.
 - Perçages supérieurs, pour fixation d'accessoires et extrémité supérieur du pignon suivant norme NAMUR VDI\VDE-3845.
 - Indicateur de position sur demande, permettant le montage d'un boîtier fin de course en position supérieur.
 - Plaque signalétique adhésive en aluminium, à série progressive, gravure automatique.
 - Lubrification d'usine garantie pour 1 000 000 de manœuvres minimum.
 - Test de fonctionnement et d'étanchéité pneumatique à 100% sur banc de test électronique et certification unitaire des produits.
 - Exécution standard pour température ambiante -20°C +80°C (en option exécution spéciale pour températures extrêmes).
 - Conforme pour l'utilisation en atmosphère explosive: protection Ex II 2 GD «c».
 - Conforme aux exigences de conception et fabrication de la nome EN 15714-3.


ALIMENTATION EN AIR	TEMPÉRATURE I	D'UTILISATION	PRESSION D'UTILISATION	AJUSTEMENT DE
Air comprimé filtré. Sec ou lubrifié.	STANDARD HAUTE température BASSE température TRÈS BASSE température	-20° +80°C (-4 +175°F) -20° +150°C (-4 + 300°F) -40° +80°C (-40 + 175°F) -60° +80°C (-76 + 175°F)	8 bar/120 psi - CONTINU 10 bar/142 psi - MAXIMUM	0° ±5° 90° ±5°


COUPLES ACTIONNEURS DOUBLE EFFET EN Nm Série RE = 90°


TVDE				PRESSIO	N D'ALIMEN	TATION EN	AIR (bar)			
TYPE	1	2	3	4	5	6	7	8	9	10
RE 043	-	-	6,5	8,7	10,9	13,0	15,2	17,3	19,5	21,7
RE 051	3,3	6,7	10,0	13,4	16,7	20,1	23,4	26,8	30,1	33,5
RE 064	5,9	11,8	17,8	23,7	29,6	35,5	41,4	47,4	53,3	59,2
RE 076	11,8	23,5	35,3	47,1	58,9	70,6	82,4	94,2	105,9	117,7
RE 086	17,2	34,5	51,7	68,9	86,1	103,4	120,6	137,8	155,0	172,3
RE 101	27,5	54,9	82,4	109,8	137,3	164,8	192,2	219,7	247,1	274,6
RE 116	43,7	87,4	131,1	174,9	218,6	262,3	306,0	349,7	393,4	437,1
RE 126	56,6	113,3	169,9	226,5	283,2	339,8	396,4	453,0	509,7	566,3
RE 146	88,4	176,7	265,1	353,4	441,8	530,1	618,5	706,9	795,2	883,6
RE 161	114,9	229,7	344,6	459,5	574,3	689,2	804,1	918,9	1034	1149
RE 181	156,6	313,1	469,7	626,3	782,9	939,4	1096	1253	1409	1565
RE 201	215,3	430,6	646,0	861,3	1077	1292	1507	1723	1938	2153
RE 241	372,5	745,0	1118	1490	1863	2235	2608	2980	3353	3725
RE 271	539,2	1078	1617	2157	2696	3235	3774	4314	4853	5392
RE 331	911,5	1823	2734	3646	4558	5469	6835	7292	8204	9115
RE 421	1671	3342	5013	6684	8354	10025	11696	13367	-	-

		CC	UPLE	S AC	TION	NEUR	S SIM	PLE E	FFET	EN N	m		Série	RE = 9	0°
	RESSORTS				PRESSI	ON D'A	LIMEN	TATIO	N EN A	IR (bar)				PLES
TYPE	par côté		3		4		5		5		7		3		ORTS
	des pistons	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°	0°	90°	90°	0°
RE 043	3 4	-	-	-	-	7,1	4,1	9,3 8,1	6,3 4,1	11,5 10,2	8,5 6,2	13,7 12,4	10,7 8,4	6,8 9,0	3,8 5,0
	3	5,8	4,3	9,1	7,6	12,5	10,9	15,8	14,3	19,2	17,6	22,5	21,0	5,8	4,3
RE 051	4	4,4	2,3	7,8	5,7	11,1	9,0	14,4	12,3	17,8	15,7	21,1	19,0	7,8	5,7
	5 6			6,3	3,7	9,7	7,1	13,0	10,4	16,4	13,8	19,7	17,1 15,2	9,7	7,1
	3	10,7	7,1	16,6	13,0	8,2 22,5	5,1 18,9	11,6 28,5	8,5 24,8	14,9 34,4	11,8 30,8	18,3 40,3	36,7	11,6 10,7	8,5 7,1
RE 064	4	8,4	3,5	14,3	9,4	20,2	15,4	26,1	21,3	32,0	27,2	38,0	33,1	14,3	9,4
KE U04	5			11,9	5,9	17,8	11,8	23,8	17,7	29,7	23,6	35,6	29,6	17,8	11,8
	6	24.4	143	22.0	26.0	15,5	8,2	21,4	14,1	27,3	20,1	33,2	26,0	21,4	14,1
	3 4	21,1 16,3	14,3 7,2	32,8 28,1	26,0 19,0	44,6 39,8	37,8 30,8	56,4 51,6	49,6 42,5	68,1 63,4	61,3 54,3	79,9 75,2	73,1 66,1	21,1 28,1	14,3 19,0
RE 076	5	10,5	,,_	23,3	12,0	35,1	23,8	46,9	35,5	58,6	47,3	70,4	59,1	35,1	23,8
	6					30,3	16,7	42,1	28,5	53,9	40,3	65,6	52,0	42,1	28,5
	3	33,8	17,8	51,1	35,1	68,3	52,3	85,5	69,5	102,7	86,7	120,0	104,0	33,8	17,8
RE 086	4 5	27,9	6,6	45,1 39,2	23,8 12,5	62,3 56,4	41,0 29,7	79,6 73,6	58,2 47,0	96,8 90,8	75,5 64,2	114,0 108,1	92,7 81,4	45,1 56,4	23,8 29,7
	6			33,2	12,3	50,4	18,5	67,7	35,7	84,9	52,9	102,1	70,1	67,7	35,7
	3	50,1	32,3	77,5	59,7	105,0	87,2	132,5	114,7	159,9	142,1	187,4	169,6	50,1	32,3
RE 101	4	39,3	15,6	66,8	43,0	94,2	70,5	121,7	98,0	149,2	125,4	176,6	152,9	66,8	43,1
	5 6			56,0	26,4	83,5 72,7	53,8 37,1	110,9 100,2	81,3 64,6	138,4 127,6	108,7 92,0	165,9 155,1	136,2 119,5	83,5 100,2	53,8 64,6
	3	80,7	50,5	124,4	94,2	168,1	137,1	211,8	181,6	255,5	225,3	299,3	269,0	80,7	50,5
RE 116	4	63,9	23,5	107,6	67,3	151,3	111,0	195,0	154,7	238,7	198,4	282,4	242,1	107,6	67,3
KE 110	5			90,8	40,4	134,5	84,1	178,2	127,8	221,9	171,5	265,6	215,2	134,5	84,1
	6 3	105.0	640	161.6	121 5	117,7	57,2	161,4	100,9	205,1	144,6	248,8	188,3	161,4	100,9
	4	105,0 83,3	64,9 29,9	161,6 140,0	121,5 86,5	218,2 196,6	178,2 143,2	274,9 253,2	234,8 199,8	331,6 309,9	291,4 256,4	388,1 366,5	348,0 313,0	105,0 140,0	64,9 86,6
RE 126	5	05,5	23,3	118,3	51,5	175,0	108,2	231,6	164,8	288,2	221,4	344,8	278,1	175,0	108,2
	6					153,3	73,2	210,0	129,8	266,6	186,4	323,2	243,1	210,0	129,8
	3	165,2	102,6	250,8	190,9	339,2	279,3	427,5	367,7	519,9	456,0	604,3	544,4	162,5	102,6
RE 146	4 5	128,3	48,4	216,6 182,4	136,8 82,6	305,0 270,8	225,1 171,0	393,3 359,1	313,5 259,3	481,7 447,5	401,9 347,7	570,1 535,9	490,2 436,0	216,6 270,8	136,8 171,0
	6			102,1	02,0	236,6	116,8	324,9	205,2	413,3	293,5	501,7	381,9	325,0	205,2
	3	202,7	141,9	317,5	256,8	432,4	371,6	547,3	486,5	662,1	601,4	777,0	716,2	202,7	141,9
RE 161	4	155,3	74,3	270,2	189,2	385,1	304,1	499,9	418,9	614,8	533,8	729,7	648,7	270,2	189,2
	5 6			222,9	121,6	337,8 290,4	236,5 168,9	452,6 405,3	351,4 283,8	567,5 520,2	466,2 398,6	682,4 635,0	581,1 513,5	337,8 405,3	236,5 283,8
	3	281,6	188,2	438,1	344,7	594,7	501,3	751,3	657,9	907,8	814,5	1064	971,0	281,5	188,2
RE 181	4	218,8	94,3	375,4	250,9	532,0	407,5	688,5	564,0	845,1	720,6	1002	877,2	375,4	250,9
KL 101	5			312,7	157,0	469,3	313,6	625,8	470,2	782,4	626,8	939,0	783,3	469,3	313,6
	<u>6</u> 3	386,2	259,8	601,5	475,1 3	406,5 816,8	219,8 690,5	563,1 1032	376,3 905,8	719,7 1247	532,9 1121	876,2 1436	689,5 1336	563,1 386,2	376,3 259,8
DE 201	4	299,6	131,1	514,9	46,4	730,2	561,8	945,5	777,1	1160	992,4	1376	1208	514,9	346,4
RE 201	5	,	•	428,3	217,7	643,6	433,0	858,9	648,4	1074	863,7	1290	1079	643,6	433,0
	6			4007		557,0	304,3		519,6	987,6	735,0	1203	950,3	772,3	519,6
	3 4	664,0	453,6	1037 885,4	826,2 604,8	1409 1258	1199 977,4	1782 1630	1571 1350	2154 2003	1944 1722	2527 2376	2316 2095	664,0 885,4	453,6 604,8
RE 241	5			883,4	004,6	1107	756,0	1479	1129	1852	1501	2224	1874	1107	756,0
	6					955,5	534,7	1328	907,2	1701	1280	2073	1653	1328	907,2
	3	912,5	705,1	1452	1244	1991	1783	2530	2323	3069	2862	3608	3401	912,5	705,1
RE 271	4 5			1217	940,2	1756 1521	1479 1175	2295 2060	2019 1714	2834 2599	2558 2144	3373 3138	3097 2793	1217 1521	940,1 1175
	6					1286	871,0	1825	1410	2364	1954	2903	2489	1825	1410
	3	1626	1108	2538	2020	3450	2931	4361	3843	5273	4755	6184	5666	1626	1108
RE 331	4			2168	1477	3080	2389	3992	3301	4903	4212	5815	5123	2168	1477
	5					2711	1847	3622	2759	4534 4165	3670	5445 5076	4582 4040	2711	1847
	3	2999	2014	4670	3685	2341 6340	1305 5356	3253 8011	2216 7026	4165 9682	3128 8697	5076 11353	4040 10368	3253 2999	2014
DE 421	4	2327	1014	3998	2685	5669	4356	7340	6027	9011	7698	9369	9369	3998	2685
RE 421	5			3327	1685	4998	3356	6669	5027	8340	6698	8369	8369	4998	3356
	6					4327	2357	5997	4028	7668	5698	7369	7369	5997	4028



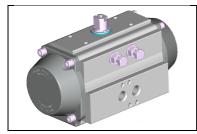
DOCITION								TY	PE							
POSITION	RE 043	RE 051	RE 064	RE 076	RE 086	RE 101	RE 116	RE 126	RE 146	RE 161	RE 181	RE 201	RE 241	RE 271	RE 331	RE 421
A-90°	141	138	155	203	239	261	304	333	398	424	482	528	604	684	850	940
В	62	69	86	102	112	127	145,5	157,5	177	196	220	246	298	332	414	542
С	63,5	75	86	94	104	120	133,5	144,5	164,5	182	203,5	222	300	352	400	528
VDI/VDE 3845 F x G	50 x 25			80 x 30				x 30 x 30		130 x 30				200 x 50		
L	27	33,5	38	42,5	49	55	63,5	69,5	80,5	89	99,5	110	150	176	190	234
М	36,5	41,5	48	51,5	55	65	70	75	84	93	104	112	150	176	210	294
Port A Port B DIN 259	1/ GAS-							'4" -NPT							/2" -NPT	
NxO		8 x 12			14 x 18			27	x 36		32 :	x 42	42 x 60		55 x 80	
P			2	0				30			•	5	50			80
Q × I	9 x 10 11 x 13	9 x 10 11 x 13	9 x 10 11 x 13 14 x 16	11 x 13 14 x 16 17 x 20	14 x 16 17 x 20	14 x 16 17 x 20 22 x 25	17 x 20 22 x 25	17 x 20 22 x 25 27 x 29	22 x 25 27 x 29	22 x 25 27 x 29	27 x 29 36 x 39	27 x 29 36 x 39	36 x 39 46 x 50	36 x 39 46 x 50	* 46 x 50 55 x 60	
F ISO 5211	F04	F04	F05/07	F05/07	F05/07	F07/10	F07/10	F07/10	F10/12	F10/12	F10/12	F14	F14	F16	F16/25	F25/30
Optional	F03/05	F03/05	F3/5/7 F04			F5/7/10		F7/10/12			F14	F10/12	F(12)/16 F16	F(12)/16 F14		F(16) /25/30

POSITION		F ISO 5211												
POSITION	F03	F04	F03/05	F05	F05/07	F5/7/10	F07/10	F10/12	F14	F16	F25	F30		
ø (w)	Ø 36 (M5x8)	Ø 42 (M5x8)	Ø 36 (M5x8) Ø 50 (M6x9)	Ø 50 (M6x9)	Ø 50 (M6x9) Ø 70 (M8x12)	Ø 50 (M6x9) Ø 70 (M8x12) Ø 102 (M10x15)	Ø 70 (M8x12) Ø 102 (M10x15)	Ø 102 (M10x15) Ø 125 (M12x18)	Ø 140 (M16x24)	Ø 165 (M20x30)	Ø 254 (M16x24) N°8 FORI	Ø 298 (M20x35) N°8 FORI		
н	25	30	25	35	35 (RE 086=40)	40	55	85 (RE 161=75)	100	130	200	200		

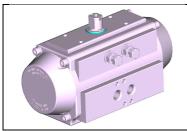
COMPOSANTS - SPÉCIFICATIONS

COMPOSANT	QUANTITÉ	SPÉCIFICATION	MATIÈRE	NORME SPÉCIFIQUE	REVÊTEMENTS
1	1	Corps	Alliage d'aluminium extrudé	EN AW 6063 T6	A - N - A+TF
2	2	Piston	Alliage d'aluminium	EN AB 46100 T6	А
3	2	Couvercles	Alliage d'aluminium	EN AB 46100 T6	N - V - A+TF
4	1 Pignon		Acier Carbone optional Acier INOXYDABLE	ASTM A-105 AISI 304 (A2) AISI 316 (A4)	N - -
5 *	2	Clavette anti-ejection	POM - PA66 - PA66 - LEXAN		
6 *	1	O-ring inférieur pignon	NBR - FPM\FKM - Silicone		
7 *	1	O-ring supérieur pignon	NBR - FPM\FKM - Silicone		
10 *	1	Circlips	Acier Carbone		N
11	0 12	Groupe ressorts	Acier Carbone, PA 66, Acier Inoxydable	C-98	V
12 *	2	O-ring piston	NBR - FPM\FKM - Silicone		
13 *	2	Bague anti-friction piston	POM - PA66 - <mark>PA66</mark> - LEXAN		
14 *	2	Joint de flasque	NBR - FPM\FKM - Silicone		
15	1	Plaque d'identification	Alluminium		
16	4 + 4	Vis de fixation des flasques	Acier INOXYDABLE	AISI 304 (A2)	
17	2	Ecrou	Acier INOXYDABLE	AISI 304 (A2)	
18	2	Rondelle	Acier INOXYDABLE	AISI 304 (A2)	
19 *	2	O-ring	NBR - FPM\FKM - Silicone		
22 *	1	Rondelle anti-friction came	POM - PA66 - PA66 - LEXAN		
23 *	1	Rondelle de poussée	Acier INOXYDABLE	AISI 304 (A2)	
24 *	1	Rondelle anti-friction piston	POM - PA66 - PA66 - LEXAN		
25 *	1	Bague de guidage inf. pignon	POM - PA66 - PA66 - LEXAN		
26 *	1	Bague de guidage sup. pignon	POM - PA66 - PA66 - LEXAN		
27 *	2	Patin anti-friction piston	POM - PA66 - PA66 - LEXAN		
28	2	Vis de réglage de rotation	Acier INOXYDABLE	AISI 304 (A2)	
40	1	Came	Acier INOXYDABLE	AISI 316 (A4)	

REVÊTEMENTS


V = peinture poudre polyester

A+TF = anodisation + revêtement PTFE


A = anodisation

N = nickelage chimique

PROTECTIONS DES SURFACES - TRAITEMENTS DES MATÉRIAUX

		UTILISATION			
	Corps	Couvercles	Pistons	Pignon	
AV standard	Anodisation	Peinture poudre de polyester	Anodisation	Nickelage chimique haut phosphore (12%) opt. AISI 304 (A2) opt. AISI 316 (A4)	- Industrie, usage général.
Couleur	Gris	Gris	Brun	Acier brillant	
Épaisseur	25 цт	60/80 цт	15 цт	20 цт	

		DESCR	IPTION		UTILISATION		
	Corps	Couvercles	Pistons	Pignon			
NN	Nickelage chimique haut phosphore (12%)	Nickelage chimique haut phosphore (12%)	Anodisation	Nickelage chimique haut phosphore (12%) opt. AISI 304 (A2) opt. AISI 316 (A4)	- Faibles solutions		
Couleur	Acier brillant	Acier brillant	Brun	Acier brillant	alcalines.		
Épaisseur	20 цт	20 цт	15 цт	20 цт			

		DESCR	IPTION		UTILISATION
	Corps	Couvercles	Pistons	Pignon	
TF TF	Anodisation + Revêtement PTFE	Anodisation + Revêtement PTFE	Anodisation	Nickelage chimique haut phosphore (12%) opt. AISI 304 (A2) opt. AISI 316 (A4)	
Couleur	Bleu	Bleu	Brun	Acier brillant	- Hautes
Épaisseur	Anod. 25 цт PTFE 15 цт	Anod. 15 цт PTFE 15 цт	15 цт	20 цт	temperatures.

ANODISATION

L'anodisation est un traitement électrolytique qui produit sur l'aluminium une couche d'oxydation avec une épaisseur élevée. L'oxyde d'aluminium (ALUMINE) est un des matériaux les plus durs que l'on connaisse, atteignant des niveaux de dureté de 400-600 HV (54-56 HRC). En général les propriétés et les caractéristiques de l'anodisation (épaisseur minimum 25 µm) sont considérables aussi bien pour les résistances mécanique que chimique.

Meilleure résistance à l'abrasion, à la corrosion, dureté superficielle, isolation thermique, isolation électrique.

NICKELAGE CHIMIQUE

Le nickelage chimique est un procédé de dépôt sans électricité qui permet d'obtenir des couches de nickel d'épaisseur extrêmement uniforme, même sur les arrêtes, les perçages non débouchant, les filetages et les canaux. Pendant le processus de production, le nickel vient se combiner avec le phosphore en pourcentage variable jusqu'à 12% (haut phosphore) de la plus haute qualité. La dureté superficielle obtenue est de l'ordre de 400-480 HV (45-55 HRC).

Meilleure résistance à l'abrasion, à la corrosion, dureté superficielle, aspect esthétique similaire à l'acier inoxydable, résistance aux alcalins et aux détergents.

REVÊTEMENT PEINTURE POUDRE POLYESTER

Le revêtement polyester est obtenu par un dépôt de poudre de peinture, sur des pièces polarisées grâce à un potentiel électrique. Après l'application, les pièces sont chauffées au four pour polymériser et diffuser la peinture qui ne présente alors plus aucune porosité. Les épaisseurs sont très uniformes et avec 60-80 µm on obtient la meilleure élasticité: l'adhérence au métal est assurée par sablage/brossage et trempe dans un bain de dégraissage et d'apprêt sur les pièces brutes.

Meilleure résistance à la corrosion, protection contre les chocs, esthétique brillante, résistance aux agents chimiques.

ANODISATION + REVÊTEMENT PTFE

Comme amélioration supplémentaire de l'anodisation d'un alliage d'aluminium, il est possible d'utiliser des revêtements à base de polytetrafluoroethylène ou PTFE, connu pour ses exceptionnelles caractéristiques chimiques et physique. Sur des surfaces avec double traitement, la dureté et la faible rugosité de l'oxyde (partie interne soumise au fluage), s'additionnent avec la résistance chimique et les excellentes propriétés de barrière thermique du PTFE (partie externe soumise aux agressions chimiques).

Meilleure résistance à la corrosion, à la température, protection contre les chocs, extrême résistance aux agents chimiques résistance et aux ambiances marines.

PIGNONS EN ACIER INOXYDABLE: AISI 304 (A2) / AISI 316 (A4) - OPTION

Pour les applications en ambiances particulièrement agressives, hautes températures, ou en ambiance marine, ou pour des utilisation dans la chimie, l'alimentaire, la pharmacie, il est possible d'utiliser des pigons en Acier Inoxydable AISI 304 (A2) / AISI 316 (A4), bien connus pour leur résistance chimique.

Via Molino Emili, 16 - 25030 MACLODIO (BS) Italy - Tel. +39 030 97 86 61/2- Fax +39 030 97 86 63 www.alphair.it - www.alphapompe.it

- Tous droits réservés - Annule et remplace toutes les versions précédentes - Les données sont sujettes à changement sans préavis - Non garantie l'exactitude -

COMPANY WITH QUALITY SYSTEM CERTIFIED BY DNV GL = ISO 9001 =

